Federal Aviation Administration, DOT - (d) Be designed so that no unused, unstowed microphone will render the system inoperative. - (e) Be capable of functioning independently of any required crewmember interphone system. - (f) Be accessible for immediate use from each of two flight crewmember stations in the pilot compartment. - (g) For each required floor-level passenger emergency exit which has an adjacent flight attendant seat, have a microphone which is readily accessible to the seated flight attendant, except that one microphone may serve more than one exit, provided the proximity of the exits allows unassisted verbal communication between seated flight attendants. [Doc. No. 26003, 58 FR 45229, Aug. 26, 1993] MISCELLANEOUS EQUIPMENT ## §25.1431 Electronic equipment. - (a) In showing compliance with §25.1309 (a) and (b) with respect to radio and electronic equipment and their installations, critical environmental conditions must be considered. - (b) Radio and electronic equipment must be supplied with power under the requirements of §25.1355(c). - (c) Radio and electronic equipment, controls, and wiring must be installed so that operation of any one unit or system of units will not adversely affect the simultaneous operation of any other radio or electronic unit, or system of units, required by this chapter. ## §25.1433 Vacuum systems. There must be means, in addition to the normal pressure relief, to automatically relieve the pressure in the discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe. [Doc. No. 5066, 29 FR 18291, Dec. 24, 1964, as amended by Amdt. 25–72, 55 FR 29785, July 20, 1990] ## § 25.1435 Hydraulic systems. (a) Design. (1) Each element of the hydraulic system must be designed to withstand, without deformation that would prevent it from performing its intended function, the design operating pressure loads in combination with limit structural loads which may be imposed. - (2) Each element of the hydraulic system must be able to withstand, without rupture, the design operating pressure loads multiplied by a factor of 1.5 in combination with ultimate structural loads that can reasonably occur simultaneously. Design operating pressure is maximum normal operating pressure, excluding transient pressure. - (b) Tests and analysis. (1) A complete hydraulic system must be static tested to show that it can withstand 1.5 times the design operating pressure without a deformation of any part of the system that would prevent it from performing its intended function. Clearance between structural members and hydraulic system elements must be adequate and there must be no permanent detrimental deformation. For the purpose of this test, the pressure relief valve may be made inoperable to permit application of the required pressure. - (2) Compliance with §25.1309 for hydraulic systems must be shown by functional tests, endurance tests, and analyses. The entire system, or appropriate subsystems, must be tested in an airplane or in a mock-up installation to determine proper performance and proper relation to other aircraft systems. The functional tests must include simulation of hydraulic system failure conditions. Endurance tests must simulate the repeated complete flights that could be expected to occur in service. Elements which fail during the tests must be modified in order to have the design deficiency corrected and, where necessary, must be sufficiently retested. Simulation of operating and environmental conditions must be completed on elements and appropriate portions of the hydraulic system to the extent necessary to evaluate the environmental effects. Compliance with §25.1309 must take into account the following: - (i) Static and dynamic loads including flight, ground, pilot, hydrostatic, inertial and thermally induced loads, and combinations thereof. - (ii) Motion, vibration, pressure transients, and fatigue. - (iii) Abrasion, corrosion, and erosion.